Eckmann-Hilton and the Hopf Fibration

Raymond Baker

University of Colorado Boulder morphismz.github.io

> HoTT/UF 2024 April 3rd, 2024

イロト イボト イヨト イヨト

<u>The Goal</u>: Construct the Hopf fibration hpf : $\mathbb{S}^3 \to \mathbb{S}^2$ using the Eckmann-Hilton argument.

And some reasons to care:

1 Simple description of the generator of $\pi_3(\mathbb{S}^2)$. From the fiber sequence of hpf.

2 Ditto the generator of $\pi_4(\mathbb{S}^3)$. From the Freudenthal suspension theorem.

3 $\pi_4(\mathbb{S}^3)$ has order *at most* **2**. From Syllepsis.

(日)
(H)
(H)</li

The Plan

- **1** Use Eckmann-Hilton to construct eh : $\Omega^3(\mathbb{S}^2)$. This is equivalent to a map hpf : $\mathbb{S}^3 \to \mathbb{S}^2$.
- 2 Characterize the fiber as S¹ by generalizing ideas from Kraus and Von Raumer's "Path Spaces of Higher Inductive Types".

The Eckmann-Hilton Argument

Eckmann-Hilton For $\alpha, \beta : \Omega^2(X)$, we have EH $(\alpha, \beta) : \alpha \cdot \beta = \beta \cdot \alpha$

But where does this identification come from?

4/36

Where does Path Concatination come from?

Fix a pointed type (X, \bullet) and consider $Id_{\bullet} : X \to U$.

```
A loop p : \Omega(X) induces:
tr<sup>ld</sup>•(p) : \Omega(X) \simeq \Omega(X)
```

This is path concatination:

for $q: \Omega(X)$ we have: tr $(p)(q) = q \cdot p$.

Where does Eckmann-Hilton come from?

Up one dimension:

a 2-loop $\alpha : \Omega^2(X, \bullet)$ induces: $tr^2(\alpha) : id_{\Omega(X)} \sim id_{\Omega(X)}$

This is Eckmann-Hilton:

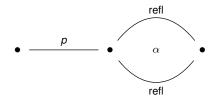
for β : $\Omega^2(X)$, we have: nat-[tr²(α)](β) = EH(α , β)

(modulo coherence paths)

A formula for $tr^2(\alpha)$

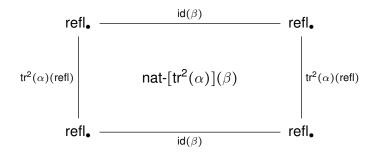
Computing $\operatorname{tr}^2(\alpha) : \operatorname{id}_{\Omega(X)} \sim \operatorname{id}_{\Omega(X)}$

$$tr^2(\alpha) = whisker_{\alpha} = \lambda(p).refl_p \star \alpha$$



$$tr^2(\alpha)(refl_{\bullet}) = \alpha$$

The naturality condition of $tr^2(\alpha) : id_{\Omega(X)} \sim id_{\Omega(X)}$ For $\beta : \Omega^2(X)$:



Plus coherence paths, this defines

$$\mathsf{EH}(\alpha,\beta):\alpha \,\boldsymbol{\cdot}\,\beta=\beta \,\boldsymbol{\cdot}\,\alpha$$

Eckmann-Hilton in S²

 $EH(surf_2, surf_2) : surf_2 \cdot surf_2 = surf_2 \cdot surf_2$

The type of this is identification is equivalent to $\Omega^3(\mathbb{S}^2)$.

The Eckmann-Hilton 3-loop

Define eh : $\Omega^3(\mathbb{S}^2)$ as the image of EH(surf_2, surf_2) under said equivalence.

See agda-unimath for more.

The map hpf

The 3-loop eh is equivalent to a map, the Hopf fibration:

```
hpf : S^3 \to S^2
Define a map hpf : S^3 \to S^2 by S^3-induction:
hpf(base<sub>3</sub>) := base<sub>2</sub>
hpf(surf<sub>3</sub>) := eh
```

< ロ > < 同 > < 三 > < 三 > <

The Universal Property of the Family of Fibers

Fix a pointed map $h : A \rightarrow B$. Then:

Heuristic

 $fib_h(b_0)$ is like the loop space of *B* with extra identifications freely generated by the map *h*.

The Universal Property of the Family of Fibers

We have an induced type family $fib_h \circ h : A \to U$.

This family always comes equipped with a section:

 $\lambda(a).(a, \operatorname{refl}_{h(a)}): (a:A) \to \operatorname{fib}_h \circ h(a)$

called a lift of h to fib_h.

The Wild Category of Families with Lifts

And the Universal Property of the Family of Fibers

Wild Category of Families with Lifts Objects: families $P : B \rightarrow U$ equipped with a lift $(a : A) \rightarrow P \circ h(a)$

Maps: families of maps $(b:B) \rightarrow P(b) \rightarrow Q(b)$ that preserve the lift

Universal Property of fib_h

The family fib_h with its canonical lift is intial in this wild category.

Proof: follows from the standard equivalence $A \simeq \sum_{b:B} fib_h(b)$. Formalized in agda-unimath

ヘロア 人間 アメヨア 人口 ア

Loop Spaces are a Special Case

If $A \equiv$ unit and h: unit $\rightarrow B$ defined by $h(\star) \equiv b_0$:

$$((a: unit) \rightarrow P \circ h(a)) \simeq P(b_0)$$

So fib_{*h*} is the inital type family equipped with a point over b_0

Specializing the Universal Property

Let $A \equiv \mathbb{S}^3$, $B \equiv \mathbb{S}^2$ and $h \equiv hpf$.

Then fib_{hpf} is the inital:

family over S²

```
point u : fib<sub>hpf</sub>(base<sub>2</sub>)
```

identification t: tr³(eh)(u) = refl²_u

The latter identification is equivalent to an identification

$$tr^{3}(EH(surf_{2}, surf_{2}))(u) = refl_{tr^{2}(surf_{2} \cdot surf_{2})(u)}$$

伺 ト イヨト イヨト

Specializing the Universal Property

fib_{hpf} is the inital:

family over \mathbb{S}^2

```
point u : fib<sub>hpf</sub>(base<sub>2</sub>)
```

```
identification t: tr<sup>3</sup>(EH(surf<sub>2</sub>, surf<sub>2</sub>))(u) = refl<sub>tr<sup>2</sup>(surf<sub>2</sub> · surf<sub>2</sub>)(u)</sub>
```

Interlude, descent data of S²

A type family *P* over \mathbb{S}^2 is equivalent to:

Descent data of S²

a type *X*, the value of *P*(base₂)

a 2-automorphism $id_X \sim id_X$, the transport $tr^2(surf_2)$

A Characterization of fibhpf

Then fib_{hpf} is the inital data:

type F

```
2-automorphism H: id<sub>F</sub> ~ id<sub>F</sub>
```

point *u* : *F*

identification $tr^3(EH(surf_2, surf_2))(u) = refl_{tr^2(surf_2 \cdot surf_2)(u)}$

Eckmann-Hilton in the Universe

For $P: X \to U$ with $u: P(\bullet)$ and $\alpha, \beta: \Omega^2(X, \bullet)$:

$$\begin{aligned} \operatorname{tr}^{2}(\alpha \cdot \beta)(u) & \xrightarrow{\operatorname{tr}^{2} \operatorname{concat}_{\alpha,\beta}} \operatorname{tr}^{2}(\alpha)(u) \cdot \operatorname{tr}^{2}(\beta)(u) \\ & \operatorname{tr}^{3}(\operatorname{EH}(\alpha,\beta))(u) & \operatorname{tr}^{3}\operatorname{-EH} & \operatorname{nat-}[\operatorname{tr}^{2}(\alpha)](\operatorname{tr}^{2}(\beta)(u)) \\ & \operatorname{tr}^{2}(\beta \cdot \alpha)(u) & \xrightarrow{\operatorname{tr}^{2}\operatorname{-concat}_{\beta,\alpha}} \operatorname{tr}^{2}(\beta)(u) \cdot \operatorname{tr}^{2}(\alpha)(u) \end{aligned}$$

Proof: See agda-unimath

A Characterization of fibhpf

So fib_{hpf} is the inital data:

type F

```
2-automorphism H : id<sub>F</sub> ~ id<sub>F</sub>
```

point u : F

identification nat-[tr²(surf₂)](tr²(surf₂)(u)) = refl_{tr²(surf₂)(u) · tr²surf₂(u)}

A Characterizaton of fibhpf

Finally, fib_{hpf} is the initial data:

type F

point *u* : *F*

2-automorphism H: id_F ~ id_F

identification nat- $H(H(u)) = \operatorname{refl}_{H(u) \cdot H(u)}$

The Fiber is \mathbb{S}^1

Want $F \simeq \mathbb{S}^1$

Two approaches:

1 Using a HIT and directly constructing an equivalence

2 Show \mathbb{S}^1 is initial in the wild category of *F*-algebras

伺 とう ヨ とう とうとう

In cubical agda: thanks to Tom Jack

In Book HoTT: possible ...

In agda-unimath (and other common HoTT repos): not possible

* E > * E >

Give a definition of the wild category of *F*-algebras

Then show hom_{*F*-alg}(\mathbb{S}^1 , *X*) is contractible for every *F*-algebra *X*.

・ 同 ト ・ ヨ ト ・ ヨ ト

\mathbb{S}^1 forms an *F*-algebra

type - \mathbb{S}^1

2-automorphism - L

point - b₁

identification - $defn_L : nat-L(L(b_1)) = refl_{loop \cdot loop}$

Morphisms of *F*-algebras

Consider an *F*-algebra (X, K, x_0, p)

A morphism of *F*-algebras $(\mathbb{S}^1, L, b_1, \text{defn}_L) \rightarrow (X, K, x_0, p)$ comprises:

- 1 $g: \mathbb{S}^1 \to X$
- **2** $G: g \cdot L \sim K \cdot g$
- **3** $g_0: g(b_1) = x_0$
- 4 t, a witness that "defn_L is sent to q"

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

 $\hom_{F-alg}(\mathbb{S}^1, X) \simeq unit$

a map: $(g: \mathbb{S}^1 \to X, G: g \cdot L \sim K \cdot g, g_0: g(b_1) = x_0, t)$

g is equivalent to $g(b_1) : X$ and $g(loop) : \Omega(X, x)$.

 $(g(b_1), g_0)$ is a contractible pair.

G is equivalent to G(b) : $g(\text{loop}) = K(g(b_1))$ and nat-G(loop).

(g(loop), G) is a contractible pair.

Claim: nat-*G*(loop) and *t* form a contractible pair.

くロ とく 御 とく ヨ とく ヨ とう

Fiber Sequnce and the Calculation $\pi_3(\mathbb{S}^2)$

We now have a fiber sequence $\mathbb{S}^1 \to \mathbb{S}^3 \xrightarrow{hpf} \mathbb{S}^2$

Consequences:

It follows that $\Omega^3(hpf): \Omega^3(\mathbb{S}^3) \simeq \Omega^3(\mathbb{S}^2)$

So $eh: \Omega^3(\mathbb{S}^2)$ generates $\pi_3(\mathbb{S}^2) \cong \mathbb{Z}$

伺 ト イ ヨ ト イ ヨ ト

$\pi_4(\mathbb{S}^3)$ has order ≤ 2

The Generator of $\pi_4(\mathbb{S}^3)$

 eh_{surf_3} generates $\pi_4(\mathbb{S}^3)$

Proof: Freudenthal + functions preserve eh.

 $\pi_4(\mathbb{S}^3)$ has order ≤ 2

The square of eh_{surfa} is trival.

Proof: Syllepsis (see Sojakova)

Future Work

- 1 non-trivilaity of $\pi_4(\mathbb{S}^3)$ (a full calculation of $\pi_4(\mathbb{S}^3)$)
- 2 Adapting the James construction and Wärn's Zig Zag Construction
- **3** Higher Hopf Fibrations and Higher Coherences

Non-Trivality of $\pi_4(\mathbb{S}^3)$

Suffices to find a family $B: \Omega(\mathbb{S}^3) \to U$ such that

nat-[$tr^2(surf_3)$]($tr^2(surf_3)(u)$)

is non-trivial, for some *u* : *B*(refl)

It would follow $\pi_4(\mathbb{S}^3) \cong \mathbb{Z}/2\mathbb{Z}$.

不得 とうきょうきょうき

Adapting James and Zig Zag

the worst part of the proof: the recursive HIT, showing its \mathbb{S}^1

This is a familar problem to those characterizing loop spaces.

The solution (for certain cases):

suspension: the James construction

pushouts: Zig Zag construction

A hope: versions of these constructions for general fibers (already in the literature?)

御 と く ヨ と く ヨ と

Higher Hopf Fibrations and their Coherences

The higher Hopf fibrations $\mathbb{S}^7 \to \mathbb{S}^4$ and $\mathbb{S}^{15} \to \mathbb{S}^8$ should also arise from higher coherences.

The E_4 coherence, corresponding to $\mathbb{S}^7 \to \mathbb{S}^4$, was constructed by Sojakova.

E_n and Descent over \mathbb{S}^n

$\operatorname{surf}_n : \Omega^n(\mathbb{S}^n)$ induces an *n*-automorphism of $\Omega(\mathbb{S}^n)$

the E_n coherence is the (n-1)-dimensional naturality condition this.

easy to calculate for n = 1, 2. I've calculated this for n = 3 with much trouble. The case for $n \ge 4$ needs a motivated approach

ヘロト 人間 とくほとくほとう

Acknowledgements

- My Advisor: Professor Jonathan Wise, CU Boulder
- Tom Jack, for many helpful discussions
- Egbert Rijke, Fredrik Bakke, Vojtěch Štěpančík, and the agda-unimath community

< A >

∃ → < ∃ →</p>

The End

Questions? Comments?

◆ロ> ◆母> ◆ヨ> ◆ヨ> 「ヨ」 のへで